

Mechanical Testing of Carbon Based Woven Thermal Protection Materials

John Pham¹, Parul Agrawal², James O. Arnold³, Keith Peterson² and Ethiraj Venkatapathy³

¹USRA, NASA Ames Research Center ²ERC Inc., NASA Ames Research Center ³NASA Ames Research Center

Objective

Assessment of the structural integrity of 3-D woven carbon cloths that have undergone heating similar to Venus atmospheric entry conditions.

Background

- ➤ Planetary Science Decadal Survey expresses interest in Venus
- > NASA proposes Venus Intrepid Tessera Lander (VITAL) mission
- ➤ Implement game changing technology of adaptable, deployable entry placement technologies (ADEPT)
 - Δ Requires novel thermal protection system (TPS)
 - Δ Low ballistic coefficient \rightarrow more benign entry conditions

Thermal Protection System

- ➤ Novel 3-D woven, flexible carbon cloths
 - Δ Tailorable weave patterns and properties
 - Δ Interwoven weave architectures provide structural load and heat shield TPS
 - Δ One such architecture imaged on right
 - Δ Structural and thermal layers below

Bottom Layers
Structural Load-Bearing

- ➤ Bi-axial load aerothermal mechanical (BLAM) testing
- > Evaluate woven TPS under entry conditions

Mod	el Heat Flo Fabric (V	ux on Warp Ro W/cm ²) Load (1	unning Weft Run N/cm) Load (N/	ning Exposure Time (sec)
B1	136	5 131	10 660	35
B2	97	66	0 330	135
В3	97	131	10 660	139

Observations

- ➤ Post-exposure strength exceeds flight requirement
- ➤ BLAM testing appears to cause fabric embrittlement
- Reduction in mechanical properties correlated with exposure duration

Results

- ➤ Imaged above: Woven fabric at 4 minutes, weave elongation
- Lower image: Failed yarn, bundle loosening

Conclusion

- > Data indicates that aerothermal heating reduces mechanical strength
- Arcjet exposure appears to cause embrittlement
- Mechanical testing provides design guidelines for future woven TPS

Forward Work

- ➤ Investigate the causes of embrittlement and reduction in load bearing capacity due to aerothermal heating
- ➤ Isolate effects of oxidation and thermal exposure on mechanical performance
- ➤ Additional fabric testing to statistically verify mechanical property reductions